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ABSTRACT

The vertical discretization in a linearized baroclinic prediction model was
analvzed by comparing various finite element and finite difference solutions following
Jordan (1985). Modifications were made on Jordan’s (1985) Galerkin finite element
approximation for two staggered grids. Comparisons were made with the unmodified
moedels (Jordan, 19385) and with finite difference approximations for the same two
staggered grids. The models were run with four experiments. Most of the oscillations
that cccurred in the temperature profiles near the surface of the unmodified Galerkin
finite clement approximations disappeared following the modifications.
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I. INTRODUCTION

Most numerical weather prediction models use finite differences to accomplish
the vertical discretization even though they use finite difference, finite element, or .
spectral. horizontal discretizations. The only exceptions are the Canadian regional and
hemispheric models (Staniforth and Daley, 1977 and 1979), which use finite elements in
the vertical. The successful numerical prediction of synoptic evolutions rcquires a
proper representation of the vertical variation of the predictive fields. Since smalier ‘
scale features such as fronts (Hoskins and Bretherton, 1972 and Williams, 1967) and 1
the large scale planetary waves (Gall, 1976) are forced by energetic svnoptic-scale
features, it follows that all predictive scales of motion may be sensitive to the vertical
ciscretization used in the numerical models.

Most of the finite difference vertical discretizations use a staggered arrangement
of variables. It has been demonstrated that staggering of variables in the horizontal
(Winninghoff, 1968; Arakawa and Lamb, 1977 and Schoenstadt, 1980) improves
geostrophic adjustment and the response to small scale forcing. Most quasi-geostrophic
models (Charney and Phillips, 1933) use vertical staggering where the vertical moticn
and the temperature are carried between the levels which carry horizontal velocity and
pressure. This arrangement will be referred to as grid B. Lorenz (19€0) introduced 2
Jifferant grid for the balance equations which was designed to conserve encrgy. This
arrarigement places only the vertical velocity between the levels which carry the cther
variables (horizontal velocity, pressure and temperature) and will be referred to as gr:d
A. Tokioka (1978) analyzed a number of vertical grids with linearized equations and
found that grid A has a computational mode in the temperature field. Arakawa (19\‘. ,

T compared baroclinic instability for grids A and B in the linearized quasi-geostrop:...
o . . - . . . .
2 equations. He found a false short wave instability for grid A which did not occur with
R
:‘:: grid B. This problem is relaied to the computational mode in the temperature field.
4y . . . . . . . .
;:t Another difficulty with grid B is that the matrix which must be inverted to find the ‘
@ temperature from the pressure is singular. This is erpecially important for initialization. !
By . L. . . . {
»,:: Muany operational primitive equation models use grid A for energy conservation.
"y The use of finite elements for the vertical discretization can be expected to give a
A . . . . .
P more accuraie representation of vertical variations. The finite clement method is a ‘
Y
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special case of the Galerkin procedure which represents the dependent variables with a
weighted sum of basis functions that have a prescribed spatial structure. The finite
element method employs basis functions which are zero except in a limited region
where thev are low-order polynomials. This method was develcped in enginecrin
statics (see c.g., Zienkiewicz, 1977) and it has been more recently applied to fluid
dynamics and hydrology (see Gray and Pinder, 1976). The finite clement method has
seen successfully applied to metecrological prediction with the shailow water equations
by Cullen (1973), Hinsman (1975) and Staniforth and Mitchell (1977, 1978). Cullen
(1973), Neta et al (1986), and Neta and Williams (1986) demonstrated that finite
element formulations with piecewise linear basis functions are more accurate than
second order finite d:fferences.

Jordan (!983) compared six linear, baroclinic, vorticity-divergence equation
models using three grid schemes, grid A, grid B and an unstaggered grid. A
perturbation was found in the temperature fields of the Rossby wave experiment and
the mountain topography experiment in the finite element models using grids A and B
(Fig. 1.1).

The purpose of this study is to see if the perturbations noted in the Jordan study
coud be fixed. A baroclinic instability experiment is made with a comparison of finite
element and finite difference models for grids A and B. The finite element models for
grids A and B are modified at the boundaries and the finite difference models for grids
A and B are left as they were except for the necessarv modifications to run the
baroclinic instability experiment. The results of the modified models are compared
with the results of the unmodified models from Jordan (1983) for the Rossby wave
experinient, the mountain topography experiment and the diabatic heating experiment.
The experiments are described in Chapter I11.
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II. MODEL DESCRIPTIONS

A. MODEL FEATURES

Jordan (1985) developed six numerical models with several features to make easy
modifications for a wide range of experiments. A menu is added to each of the models
tc make the transition between four experiments simple. The user is able to prescribe
heating. mountain topography, velocity perturbation, or baroclinic experiments and the
model will make the prescribed changes in the variables governing these cases. Another
menu 1s added so that the user can prescribe the amount of printout desired from each
run. The models are written in modular structure using FORTRAN ‘77. There is
parallel construction between models. The subroutines used in one model are very
similar to those used in the other models. The models run quickly on an IBM-3033
mainframe; for example, a 96-hour forecast for a 12 laver finite element model uses less
than five seconds of computer processing time.

B. GOVERNING EQUATIONS

Each model approximates the same set of governing equations. The vorticity
equation (2.1), the divergence equation (2.2), the surface geopotential equation (2.3),
and the first law of thermodynamics (2.4) are the prognostic equations for the forecast
variables vorticity, divergence, surface geopotential and potential temperature. The
surface geopotential equation is the lower boundary condition on the vertical velocity.

The vertical coordinate Z = —In(p'py) is used, but the non-Boussinesq terms
involving e’2 are replaced by one. The prognostic equations in the coordinates x. ¥, Z,
and t are:
-,

dg owov éwcu

—++MD+Ppyv+ —— = —— =0, 2.1)

dt 5+ p 0x 6Z dvaiz (

dD du du Ov ov 0u v fwdu

—_— - —— _—— (2.2)

—_——t+ 22— =+ ~
dt  &x éx 0y Oy dy ¢x Ox ¢Z

éw Ov
T‘—-EZ-+Bu—f§+v2(p=0,

dy




(2.3)

(2.9)

In these equations:

G is the vertical component of vorticity, { = év/0x — Ju dy,

D is the horizontal divergence, D = Ju/dx + év'dy,

¢ 1s the geopotential, ¢ = gZ,

P is the surface geopotential,

T is the potential temperature,

u is the x-component of velocity,

v is the y-ccmponent of velocity,

w is the vertical velocity,

Q is the diabatic heating per unit time per unit mass,

MTS is the forced vertical velocity due to flow over mountain topography, which will
be discussed in Chapter 111,

f is the Coriolis parameter,

B is dfidy,

d)y ey, () o), a)

:i_t-=0—t+u-é;+v5;+w52' a

v2 is the horizontal Laplacian operator.

nd

The prognostic equations are linearized by expanding the variables into their
mean and perturbation states, as in Jordan (1985). The resulting linearized forecast
equations are:

-,

-y, a ']

% e —tp - -y, (2.5)
Jx

D’ D’ owdd 3%y’

O ety g -y -0 2.6

ot g uéx Pu ox dZ 4-3;2 (2.6)
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o —S= —7—=5- v—=5= RTw + MTS', (2.7)
" ot ox oy

o = -

g;:n é T 0T oT v Q (2.8)
) — = =l = Ve— = W . .

;::' ct cx oy ¢z
.t"' .

;‘.i

vl' where R is the gas constant for air, (') denotes perturbation quantities and ( ~ ) denotes
{"c mean quantities. The use of Xbar in the text will be used to denote mean quantities of
N a variable X.

v, . . . , . , .

Iy The diagnostic variables, u’, v, w’ and §’, are calculated from the forecast

variables using the definitions of divergence, vorticity, the hydrostatic equation and the
continuity equation. The rclationships are given in equations 2.9 through 2.12.

V]

u »
ik cX
.,a'
Age évo
B — =5 (2.10)
; cx
o
I co’
o0 — = RT". 2.11)
ox
)Y
: D+ (2.12)
oy + —=—=90. .
:': oz
i
-
' The use of primes to denote perturbation quantities will be discontinued. All quantities
! used in the remainder of the paper will be perturbation quantities unless otherwise
it
e noted.
:}fé. The mean state is assumed to be in hydrostatic and geostrophic balance. The
* 1, . . .
. term 8Tbar /3y in the first law of thermodynamics can be evaluated by taking  /dy of
L]
: ; the hydrostatic equation and substituting for d@bar /dy from the geostrophic relation,
ﬁs dgbar ‘év = —f ubar. Thus,
R/
s
T
2 5 |
\
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(2.1

(2.14)

The expressions (2.13) and (2.14) are substituted into equations (2.8) and (2.7),
respectively.

A singlewave spectral representation is used in the x-direction, with wave numbcr
4 = 2r'L, where L is the waveiength in the x-direction. The perturbation quantities
have the form:

HxZt) = A{Z,t) cosux + Ay(Z,t) sinpx , (2.15)
D(x,Z,t) = D(Z,) cospx + Dz(Z,t) Sinpx , (2.16)
T(x,Z,t) = T|(Z,t) cosux + Ty(Z,t) sinux, 2.17)
P (NZ1) = Sl(Z,t) COSpX + SZ(Z,t) sinpx , (2.18)
u(x,Z,t) = U (Z,t) cospx + Us(Z,t) sinpx , (2.19)
V(X.Z,1) = V(Z,1) cospx + Vo(Z.t) sinux , (2.20)

16




, W(XZ) = W(Z1) cospx + W5(Z,1) sinpx , ) (2.21)

. O(x.Z) = H{(Z.t) cospx + Hs(Z.1) sinpx . (2.22)

» Q(XZ1) = Q)Z.1) cosux + Qy(Z.1) sinux , (2.23)

Ty MTS(x.Z,t) = MTSl(Z,t) cospx + MTSH(Z,t) SINKX . (2.249)

::. The relations (2.15) through (2.24) are substituted into equations (2.5) through

] (2.12). The prognestic and diagnostic equations are separated into equations for the

g :? cosine and sine terms. The resultant prognostic equations are:

48

. A
3= = ~fDp = Ay =~ BV, (2.25)
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::' 0A, 3

‘.:: E“'s -fDZ + ulLAl - BV: ' (226)
i ta; - mD, - BU T W, + u2H (2.27)
—'=fA, =10 - - H— , 2.2
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(2.30) ’

és =

o = ~THSy £ FIV) - RTW, + MTS, ., (2.31)
3t “

és -

—* = uS; + faV, = RTW, + MTS,. (2.32)

U= - o (2.33)
Ly = -Lz-l . (2.34)
V= - %2 : (2.35)
v, = .L_l (2.36)

Geopotential values above the surface are obtained by integrating the hyvdrostatic
equation fror the surface (Z = Z,) to height Z:

yA
H =R | TUZDAZ + S|, (2.37)
ZO
z
Hy =R | TyZtdZ +S,. (2.38)
z

The vertical velocity is calculated by integrating the continuity equation from the top
of the atmosphere (Z = ZT) down to height Z. The upper boundary condition, w = 0

I8




at Z = Z, is used. This boundary condition is not exact, but some form of it is used
in most numerical models. The diagnostic equations for the vertical velocity are:

z
W, = | DyZndz, (2.39)
V4
Z
Wy = | DyZndZ. (2.40)
Y

Equations (2.25) through (2.40) are the prognostic and diagnostic equations that
govern all four numerical models. Using the given basic state and the one-wave spectral
perturbation quantities, the governing equations reduce to functions of Z and t. The
modeis are effectively one-dimensional.

To display the results of each model, the sine and cosine amplitudes of each
variable are combined to determine the amplitude and phase of a single cosine wave in
the x-direction. A typical variable has the form:

Y(x,Z,t) = A(Z,t) cos(px = 9) , (2.41)

where the amplitude is A(Z,t) and the phase is 8(Z,t). The amplitude and phase are
calculated at each level for all variables.

C. TIME DIFFERENCING

Two forward time steps are taken to start each model and then leapfrog time
differencing is used. The leapfrog scheme is employed because of its ease to code. A
Robert filter is used to reduce the amplitude of the computational mode generated by
the leapfrog time differencing. The filter is discussed by Haltiner and Williams (19% -,
For a prognostic variable F, calculate Fbar  _, the average value of F at time stcé
{n— 1)At, using equation (2.42),

Fnot = Fam ) + Y(Fa=2Fq 1 +Fy_ 9, (2.42)
where 7 is a weighting function. Using the unaveraged values at time step nAt,
compute the tendency (JF,ét), from its predictive equation. The predicted value at

time step (n+ 1)t is then calculated using equation (2.43),
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- dF _ )
Foe1 = Fa—y + 284500, (2.43)

In all the experiments, ¥ = 0.05 is used. The time step for each experiment is
calculated in the model by requiring, for computational stability,

VAt = =, (2.44)

1o | =

where v = ic, and ¢ is the typical phase speed of an external gravity wave.

D. VERTICAL GRIDS

Each of the models uses one of two vertical grids. The two ways used to
distribute the variables over discrete levels are depicted in Fig. 1.1. The staggered levels
are represented by the dashed iines in Fig. 1.1. Notice that the heights at which the
variables are defined change between the two grids. The notation used in this paper to
denote the staggered and unstaggered levels is consistent with the conventions used in
the coded models. The height of the unstaggered levels is denoted as Z'. The height of
the staggered levels is denoted as Z. In the models, both Z'; and Z, are defined to be
the surface of the earth. It is assumed that the staggered level Z; is exactly in the
middle of the layer between Z'; ; and Z’,. This distinction is important because the
models can have layers with unequal depth. Thus, the height of the staggered levels is
defined relative to the height of the unstaggered levels.

A finite difference model is written for each of the grid structures. The models
are denoted as FDM-A and FDM-B. Similarly, finite element models using the two
grids are indicated by FEM-A and FEM-B.

E. FINITE DIFFERENCE MODELS i

The only differences in the equations between the two FDM models are the
approximations of terms involving dubar,dZ and dTbar/dZ in the prognostic equations
and the approximations of the integral in the diagnostic geopotential equation.
Centered difference approximations are used, except at the boundaries where one-sided
differences are emploved. The finite difference approximations used in the prognostic
equations are listed in Appendix A.
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F. FINITE ELEMENT MODELS
1. FEM-A
The FEM-A model defines vertical velocity (w) at the unstaggered levels in
terms of the basis functions wi(Z). The other variabies are defined at the staggered
levels in terms of the basis functions (p](Z). The expansion for a typical term is

n+1
AlZY = T ALY e(2). (2.45)
j=1

The basis functions for this model are depicted in Fig. 2.1. The basis functions y(Z)
are defined for the unstaggered levels (solid lines at height Z') and the basis functions
@(Z) are defined for the staggered levels (dashed lines at height Z).

P2
Zo+y Va+1
Z,4y ——==-- Pa+1
z, V,
zZ —----- @,
[
®
[ J
Z, _—— - 93
z, V2
Z, =-===-- ®2
z, Ag|
*
|

Fig. 2.1 Basis functicns for grids A and B.
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The finite element approximations for the vorticity, divergence and
thermodynamic equations are derived by substituting the expansion for each dependent
variable into equations (2.25) through (2.20). Each equation is muitiplied by @(Z) and
integrated with respect to Z from the bottom to the top of the atmosphere. Each term
in the equations is the finite sum of separate integrals. Only the integrals of
overiapping basis functions are nonzero. The resultant equations, listed in Appendix
B. are matrix equations. For an N-layer model, the vectors, A1 Ay, Dy Dy, Hy, Ha,
Qq. Qy. Ty, T5. Uy, U, Vi, and Vs, contain n+ 2 components. The vectors W,. and
W5 contain n+1 components. The matrices M, K, and ®, defined below, are
(a+2) X (n+2) matrices. The matrix P, defined below, is an (n+ 1) X (n+ 2) matrix.

The mass matrix M for this model is defined by

V4

M, = ] T 0,(2) ¢,(2) dZ forji—j|s1. (2.46)
z

The matrix K is defined for terms multiplied by T,

l+l ZT

K@ = T "‘I 0D QD) ®Z)dZ  forli-jIS1. (2.47)
k=i-1 2

o]

da dT
The matrix P is defined for terms multiplied by — Z W, or by Z W,

i+1
Pm=Y % 5 \v (Z) 9,2) dZ forli=jis1. (2.48)

k=i-1Z,

where x = yu,or T.

da
The matrix @ is defined for terms multiplied by Z Vv,

i J'




, T de¢ o

o Q=Y ™| o224z for li—jlS1. (2.49)

g ] T dZ J

.‘ |' k =1 l ZO

-.I'.

it

o The staggered basis functions present two general preblems [or evaluating the

d ) elements of the four matrices. First, for an n-laver model, portions of basis functions
y @12y and @ _ »(Z) are defined in the model atmosphere but the physical meaning of
’ contributions from those terms is unclear. The contributions are included in the first

two rows ard thz last row of each matrix. Second. only portions of basis functions

; «pz(Z) and @, . l(Z) are defined in the model atmosphere. To describe the incompiete

-.; sides of both basis functions an assumption must be made about the value of @, at the

3 surface and @, 4 | at the top of the atmosphere.

:-‘.‘.: Assumptions are made and procedures are developed on an attempt to resolve

e these problems. In this model the mean state variables. ubar and Tbar, are defined only

E'.: ' at the n staggered ievels. However, ubar and Tbar values defined at the nodal points

of(pl(Z) and @ 4 Z(Z) are important in the Galerkin formulation of the dubar dZ and
O0Thar éZ terms. In these experiments, the values of ubar and Tbar are defined at the

5 surface and top of the atmosphere. Jordan (1985) did not define them at the nodal

‘} points of @y(Z) and @, ;. 5(Z). One of the major modifications of these experiments is

& to define ubar and Tbar at the nodal points of @((Z) and @, 5(Z). For constant

" shear with height. ubar and Tbar are defined at the boundaries such that the shear in

": the two halt layers at the boundaries is the same as the shear in the other layers. To

e evaluate the staggered basis functions defined in the layers between the surface and Z,,

."ff . and Z,. | and the top of the atmosphere, it is assumed that the value at the

'\;' boundaries of those basis functions is one-half. Thus, three-fourths of the basis

':::' functions 95(Z) and @, ;. 5(Z) are defined in the model atmosphere.

*‘:E The equations for the general elements of the four matrices are evaluated by

’.. substituting into equations (2.46) through (2.49) the formulas for @, ((Z)., @),

‘Z:; 9 - 1’2). ¥+ l(Z), \vi(Z), V- I(Z), and W; — 5(Z), in terms of the local coordinate

'.:: 3 = Z — Z; The equations for these basis functions defined for the levels 1, 2, i, and

;',;‘: n+ 1, are listed in Appendix C. The matrices were evaluated by integrating numerically

' using 2 point Gausian Quadratures.

i The vorticity, divergence and thermodynamic equations, written in matrix and

E:g' vector forn, are:

1' Y

W

1

i

B 2
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dA
M&t—lg M(=fD; = BV) - nK(@) A,,

(2.50)
dA

M—2= M(=fD, = B V,) + n K@) A, ,

M == M(=fD; = V) + u K@ A (2.51)

MBI Mira, - B U, + u2Hy) - uK - o) W

M2 MifA, = B U, + 12Hs) + KD Dy — n P(O) W

l (F = M(f. 2 B 2 [ 2) [ (ﬁ) 1 u (ﬁ) 2 (2‘53)

v 3 K@ T, + ( ®mV, - P(T) W, + MQ

! — = e 1 - - »
& 2T g 1 1 (2.54)
dT f =

M—= K@ T, + =~®@V, - T W, + MQ-.

M - @ Ty + 2 ®@Vy - PN W, + MQ, (2.55)

Equations (2.50) through (2.55) are simplified by muitiplying each equation by
M1 and applying the Robert filter. Actually one should not compute the inverse of
M. Instead at t=0 one should obtain the LU factorization of M. Thus at each time
step one only needs to forward and back solve a triangular system. The matrices
M-l K, M"! P, and M! @ are constants. They are constructed in the initialization
subroutine and stored for use in the forecast subroutine. The matrices are multiplied
by the appropriate vectors with values for time level nAt. The resultant forecast
equations are vector equations and the forecast value for the i-th vertical levei is the
sum of values in the i-th location of each vector equation. The prognostic equati®Gs
for the vorticity, divergence and potential temperature vectors are:

Ayn+1) = Ajn~1) + 20t(=fDy = BV - uM"Km)Az)(n). (2.56)

Az(n+ 1) = Az(n_ 1) + 2At(—fD2 - sz + RM.IK(ﬁ)Al)(n) ' (2.57)




Ditn+1 = Pin-1
+200(FA =By + u'H; - uM K@D, - uM IP@W,)y,, . (258)

Dan+1) = Dan-1
+ 280f A3 =BUs = u'Hy = WMIK@D| + uMIIPmW )y (259)

Tin+ 1) = Tin=1y
. [ et — < 1o =
- 28t MIK@DT, + =M lo@v, - MIPMW, + QUny (2.60)

Tone1y = Ton-1

-

o ar = MR v lamv. - Melp(T
- 20t (~MIK@T) + = Moy, - MIPMW, + Q). (2.61)

where the subscripts (n+ 1), (n) and (n—1) refer to the values of the vectors at time
step (n+ 1)4t, nAt and (n = 1)4t, respectively.

The surface geopotential and the diagnostic variables are calculated using the
corresponding equations in model FDM-A (see Appendix A).

2. FEM-B

The FEM-B model defines vertical velocity, potential temperature, mean state
potential temperature and diabatic heating at the unstaggered levels in terms of the
basis functions \yj(Z). The other variables are defined at the staggered levels in terms
of the basis functions (pj(Z). The basis functions are the same as defined for the FEM-
A model, shown in Fig. 2.1.

The finite element approximations for the vorticity, divergence and
thermodynamic equations are derived by substituting the expansion for each dependent
variable into equations (2.25) through (2.30). The vorticity and divergence equations
are multiplied by @,(Z) and integrated with respect to Z from the bottom to the top of
the atmosphere. The resultant Galerkin formulation of the vorticity and divergence
equations are the same as those derived for model FEM-A. The matrices in those
equations, M, K, and P, are given by equations (2.46) through (2.48) as defined for
FEM-A. The thermodynamic equations are multiplied by W;(Z) because potential
temperature is defined at the unstaggered levels. As before, the equations are integrated




through the depth of the atmosphere. The resultant equations are listed in Appendix
D. Four additional matrices are defined for the two thermodynamic equations. The
mass matrix IT is

z

T

n, = ] V(2) w(2) iz for [i—j <1. (2.62)
~0

The matrix I is defined for terms multiplied by U,

V,(Z) 0 (Z) w(Z) dZ for i-jiS1. (2.63)

dad
Terms multiplied by = V, give rise to the transpose of the matrix P, defined by (2.48).

dT
The matrix W is defined for terms multiplied by Z w,

- i+1 _ Z'r dy
Y.D=Y T*f =k V,(2) v(2) dZ for li—jl<1. (2.65)
k=i~1 z, 9

As discussed in the FEM-A model description, the staggered finite elements
present problems for evaluating the elements of the matrices. In this model ubar is
defined at the surface, the top of the atmosphere, and at the n staggered levels. The
mean state temperature, Tbar, is defined at the unstaggered levels so special definitions
for it are not needed. Jordan (1985) did not include the contributions from the
perturbation quantities defined at the nodal points of @{(Z) and @, . 5(Z). They were
included in this model as part of the modifications of this experiment. The staggered
basis functions, @;(Z), are evaluated at the boundaries using the assumptions discussed
in the previous section.

The elements of matrices I, I', and P are evaluated by substituting formulas
for 9,4 9(2), @+ (D), O(Z), @;~ ((Z), ¥;+ (D), ¥{Z), and W;_ ((Z), defined in
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A
E:'.%;f terms of the local coordinate £ = Z - Z',, into equations (2.62), (2.63), and (2.65).
;'.:‘:{:G Formulas for these basis functions are listed in Appendix C. As in FEM-A the
' o matrices are evaluated by integrating numerically using 2 point Gausian Quadratures.
r;‘-t_; The forecast matrix equations for vorticity, divergence and temperature are
fi- simplified in a manner similar to the method described for model FEM-A. The final
:g;:: form of the vorticity and divergence vector equations are the same as for model FEM-
XX

A. equations (2.36) through (2.59). The thermodynamic vector equations are:

’
»

~ o R
Mm«z .
D 5 .
ek | 3

Tin+ 1 = Tin-1)
f -
2 + 28t (+uI DT, + -ﬁﬂ'lPT(ﬁ)Vl - MW, + Q). (266)

Pl Tosn+1) = Tan=-1)

f -
> + 28t (—pITir@T, + 3 m'PToyv, - MeMW, + Q). (267

B In this model the vectors. A}, Ay, Dy, Dy, Hy, Hy, Uy, Uy, V), and Vs,
Tkt contain n+2 components. The vectors Qy, Q,, Ty, Ty, W, and W, contain n+1
™ components. The matrices I, I', and ¥ are (n+1) X (n+ 1) matrices and the matrix
] PT is an (n+2) X (n+1) matrix. The surface geopotential and the diagnostic I
eyt variables are calculated using the corresponding equations in model FDM-B.
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- III. EXPERIMENTS AND RESULTS

‘liji:é

:‘:&:E Four experiments are performed with each model; an initial perturbation in the
j-';‘;g'j:‘! meridional flow. flow over mountain topography, flow with a diabatic heat source and
» ;' baroclinic flow with vertical shear in the ubar field. The first two and the last
:::::E experiments are performed with six- and then sixtv-laver models. The heating
%:E::‘: experiment is repeated with six-, twelve- and sixty-layer models. The analytic solution
;:;;E:; of each experiment has not been derived. For each experiment, the sixty-layer model

results are intercompared to determine if the models are converging to the same

R solution. The standard of comparison for cach six-layer model is its corresponding
":;‘? ’ sixtv-laver solution. Temperature and divergence profiles are examined in each
:;:':‘: experiment.

"".‘ Several parameters are defined identically in each experiment. The vertical
.'i‘ coordinate, Z is defined between zero and one (1000—~368mb) and the vertical levels are
% equally spaced. The x-wavelength is 4,000 kilometers. The time step is 17.7 minutes.
‘_;'v The Coriolis parameter is defined at 45 degrees latitude. The mean state potential
- temperature increases with height from its surface value of 310.0 degrees K (Kelvin).
0 A. ROSSBY WAVE EXPERIMENT

-:';, } Rossby waves are generated in each model using an initial perturbation, v' = 5.0
w ; meters second (m's). in the cosine term of the meridional flow. All other perturbations
'.{.;. are initially zero. There is no diabatic heat source and no mountain topography. There
;S'"‘ is no vertical shear in the ubar field and ubar = 10.0 m/s. The latitudinal variation of
;::E::: the Coriolis parameter, B, is defined at 45 degrees latitude. The forecast experiments
‘6'.‘{?_:: are terminated at 96 hours.

’. 1. Sixty-Layer Models

£ s The sixty-layer FDM-A, FDM-B, and FEM-B models converge to the same
: > temperature and divergence solutions (Figs. 3.1=3.2). All figures will be found at the
::f'. end of the chapter. Note that the staggered models FDM-A and FEM-A are defined
; as zero at their lowest level because this level is below the bottom of the atmosphere.

NN It should also be noted that the phase of each variable is defined between zero and 360
:::':i.: degrees. There is a discontinuity in the phase profile if the phase passes through zero
S degrees. The height at which the temperature phase discontinuity in model FDM-A
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occurs differs from the other two models because temperature is defined at the
staggered levels in FDM-A. The three models represent the same physical solution,
which is called the consensus solution.

The FEM-A temperature amplitude is slightly smaller than the consensus
amplitude, 2% at height Z = 0.10, and an amplitude oscillation is present in the
lowest three lavers of the atmosphere. In the results of Jordan (1985) (Fig. 3.3(top)),
the FEM-A solution had a 32% difference from the consensus solution at height
Z = 0.10 and a much more jagged profile in the lowest three layers of the atmosphere.
Jordan (19S3) felt that this jagged profile may be caused by the terms in the matrices
which represent contributions from the basis functions near the lower boundary of the
model. The FEM-A model is modified near the boundary to correct this problem. The
FEM-A temperature phase is within 0.1 degree of the consensus. It is high enough to
pass through zero one level above the consensus. The shape of the FEM-A divergence
amplitude is consistent with that of the consensus amplitude, however it is slightly
lower at the bottom and slightly higher at the top of the atmosphere. The consensus
divergence phase is nearly constant with height and the divergence phase profile for
model FEM-A is almost identical with the consensus profile.

In the results of Jordan (1985) (Fig. 3.3(bottom)) the FEM-B solution had a
5% difference from the consensus solution and a major oscillation in the lower layers
of the atmosphere. The FEM-B model is modified near the boundary to correct this
problem and is now part of the consensus solution (Figs. 3.1=3.2)

2. Six-Layer Models

The comparison of six- and sixty-layer profiles for variables defined at
staggered levels may be initially misleading. The first staggered level in a six-layer
model occurs at Z = 0.0833. The lowest staggered level in a sixty-laver model is
defined at Z = 0.0083, which may be mistaken for the surface in the graphs. When th
values of a six-layer model coincide with a sixty-layer profile, the models are consider '™
to represent the same physical solution, even though the six-laver model has a smaller
vertical domain for staggered variables.

The temperature amplitude profiles of the six-layer models are very similar to
their corresponding sixty-layer results (Figs. 3.4=3.5). The previously discussed
problems in the lowest three layers of model FEM-A are still slightly evident in the
lowest three lavers of the six-layer profile (Fig. 3.5(top)). The six-laver profile of the
FEM-A model is nevertheless a very good approximation of the consensus profile.
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The six-laver divergence amplitude profiles for the grid A models approximate
their sixty-layer counterparts in a similar manner (Figs. 3.6(top)=3.7(top)). And the
six-laver divergence amplitude profiles for the grid B models approximate their sixty-
layer counterparts in a similar manner also (Figs. 3.6(bottom)=3.7(bottom)). The grid
B models more closely approximate the sixtv-laver consensus profile in the lower half
of the atmosphcre and the grid A models more closely approximate the sixtv-laver
consensus profile in the upper half of the atmosphere. The six-laver profile of the
FEM-A model is the closest of the four in their approximation of their sixty-laver
counterparts and the sixtv-laver consensus profile (Fig. 3.7(top)).

B. MOUNTAIN TOPOGRAPHY EXPERIMENT

The forced vertical velocity term, MTS, in the surface geopotential forecast
equation (2.3) is non-zero in this experiment. It represents the contribution to surface
geopotential from air flowing over mountain topography which varies sinusoidally in
the x-direction and has no variation in the y-direction. The mountain ridge-to-valley
height difference is 1,500 meters. To reduce the trauma for the model, the mountains
are gradually “built” to their full height over a period of 36 hours. Thus, the forced
vertical velocityv increases in the first 36 hours of the forecast period and is constant for
the remainder of the 96-hour forecast period. The equations used to define the forced
vertical velocity are included in Appendix E. There is no vertical shear in the ubar fieid
and ubar = 10.0 m's. B and all other initial perturbations are zero in this experiment.

1. Sixty-Layer Models

The FDM-A, FDM-B, and FEM-B models converge to the same physical
solution for temperature and divergence (Figs. 3.8 and 3.9).

The FEM-A temperature amplitude is again slightly smaller than the
consensus amplitude (2%) and a small oscillation is again present in the lowest three
lavers of the atmosphere. The FEM-A temperature phase and divergence ph' -,
solutions are exactly the same as the consensus solutions. The FEM-A divergenué
amplitude is only very slightly lower than the consensus amplitude at the bottom of the
atmosphere (0.5%) and is indistinguishable from the consensus profile by Z = 0.20.
Jordan (1985) found that the temperature amplitude of the unmodified FEM-A model
was 30% higher than the consensus near the bottom of the atmosphere (Fig.
3.10(top)) and that the divergence amplitude of the unmodified FEM-A model was
higher at the bottom of the atmosphere and lower at the top of the atmosphere than
the consensus (Fig. 3.10(bottom)).
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Jordan (1985) again found a jagged temperature amplitude profile in the
unmodified FEM-B model in the lowest two lavers of the atmosphere (Fig. 3.11(top))
and the temperature amplitude was 5% more than the consensus near the surface. The
unmedified FEM-B temperature phase profile was jagged in the lowest three lavers and
top two lavers of the atmosphere while the rest of the profile was within one degree of
the consensus (Fig. 3.11(bottom)). The modified FEM-B profiles are now part of the
consensus in every case for this experiment (Figs. 3.8 and 3.9).

2. Six-Layer Models

The temperature amplitude profiles of the six-laver models FDM-A, FDM-B,
and FEM-B are identical with each other and also with the consensus solution (Figs.
3.12(top) and 3.13(bottom)). The slight oscillation in the lowest three lavers of the
FEM-A model is stll slightly evident in the six-layer model (Fig. 3.13(top)), however
the six-laver model profile 1s stiil very close to the consensus profile (Fig. 3.12(top)).

The six-layer divergence amplitude profiles are very close to the sixty-layer
consensus (Figs. 3.14 and 3.12(bottom)). Both of the six-laver finite element model
divergence amplitude profiles are closer to the sixty-laver consensus divergence
ampiitude profile than the FDM-A profile (Figs. 3.14 and 3.15)

C. DIABATIC HEATING EXPERIMENT
A diabatic heat source is defined in the layer between Z = 0.40 and Z = 0.60
(670=549mb). The rate of heating is constant in time and varies in x and Z,

Q(x.Z.t) = HEATING cosz(——ZM- R ) cos(px) . (3.1)

where HEATING is 5.0 K/day, Z,, is the midpoint of the heated layer, and Z; and Z,
are the lower and upper boundaries of the heated laver, respectively. The diabatic
heating vectors, Q and Q,, are defined in the initialization subroutine and stored for
use in the forecast subroutine. There is no vertical shear in the ubar field and ubar =
10.0 m's. B and all other initial perturbations are zero in this experiment. The forecast
length is 96 hours, however, a 12-hour forecast is made for comparison with Jordan
(1985).
1. Sixty-Layer Models

For the diabatic heating function defined in equation (3.1), the maximum

keating occurs at Z = 0.50, the midpoint ol the heated layer. The models defined
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using grid B define temperatur~ and the heating functions at this point. The grid A
models do not have temperature and diabatic heating defined at this point sc the
maximum rate of heating in these models is slightly less than in the other models. :nd
the maumum heating occurs throughout one laver rather than occuring at one point.
The heating rate at each level is listed in Appendix F for the six-, twelve- and sixty-
laver models.

The sixty-laver profiles for the four models are quite similar, the differences
occur mainly because the models are responding to different forcing. The temperature
ampiitude profiles for the B grids come to a sharp point at Z = 0.50 and the grid A
models have a square-nosed profile around this point (Fig. 3.16(top)). The previously
identitied temperature amplitude oscillations in the lowest lavers of models FEM-A and
FEM-B were not evident in the unmodified models (Jordan, 1985) (Fig. 3.17) and are
not evident in any of the modified models (Figs. 3.16(top)). This is because the heating
:s defined far enough away from the boundaries so that the previous problems with the
pasis [unctions at the bottom and the top of the atmosphere do not show up here.
Note that there is a jagged profile at the bottom and top of the heated laver in the
twelve hour forecasts because they are not steady state vet. In summary, the sixty-
layer temperature profiles of all four models represent the same physical response to
the diabatic heating.

The shape of the divergence amplitude profile is not svmmetric around
Z = 0.50 because divergence is not defined exactly at the midpoint of the heated laver
in either of grids A or B (Fig. 3.18(top)). The divergence amplitude is identical outside
the heated laver for all models except FEM-A which was also true at 12 hours with the
unmodified models (Jordan, 1985), (Fig. 3.19(top)). The divergence phase profiles are
virtually identical for all models in this experiment. Jordan (1985) found that the
divergence phase for the unmodified FEM-A model at 12 hours was slightly different
from the consensus outside the heated layer (Fig. 3.19(bottom)). The modified FEM-A
model profile at 12 and 96 hours is exactly the same as the consensus profile (Figs. 2.20
and 3.13(bottom)).

2. Six and Twelve-Layer Models

The difference between grids is more evident in this experiment than in the
other experiments. Each model is run with both six and twelve layers and the results
are compared with the sixty-layer consensus of the four models.




The six-laver grid A model temperature and divergence amplitude fields barelv
respond to the diabatic heating (Figs. 3.21(top) and 3.22(top)). The grid A nodels are
on!v abcut 6% of the amplitude of the grid B models. Comparing the maximum
diabatic heating terms for the two grids, in Appendix F, it is found that the maximum
heatng in the grid A models is only about 6% of the maximum heating in the grid B
models. This is because heating is defined to be greatest at the midpoint of the heated
laver and dJecrease as vou get away from the midpoint. Grid B defines heating at the
maximum, or mudpoint and grid A defines heating at points equidistant from the
midpoint. As the number of lavers gets smaller the distance between the midpoint and
the first layver in grid A which is used to define heating increases, thus decreasing the
value of the heating that goes into the layer.

The grid A models have a stronger response to heating with twelve lavers than
with six lavers because with twelve lavers heating is defined closer to the maximum at
the nudpoint of the heated layer (Figs. 3.21-3.22). The six- and twelve-layer models
converg2 to the sixtv-laver profile equally well for the finite element models as for the
finite d:fference model for grid B (Figs. 3.23 and 3.24). For grid A the twelve-layer
divergence amplitude is closer to the corresponding 60 laver profile for the finite
element than for the finite difference model (Fig. 3.25) but the finite difference twelve-
laver profile is closer to the consensus (Fig. 3.26).

D. BAROCLINIC INSTABILITY EXPERIMENT
Vertical shear in the ubar field is defined in this experiment. The wind profile is a
linear function of Z, with ubar = (STRGTH) Z, where STRGTH defines the strength
of the wind at the top of the atmosphere in m/s. In this experiment STRGTH is
defined as 40 m s. Waves are generated in each model using an initial perturbation,
v = 5.0 m s in the cosine term of the meridional flow. 8 and all other perturbations
are initially zero. There is no diabatic heat source and no mountain topography. The
forecast experiments are terminated at 96 hours. 7
1. Sixty-Layer Models
The sixty-layer FDM-A, and FDM-B models converge to the same solution
for the temperature amplitude, temperature phase, divergence amplitude and divergence
phase (Figs. 3.27 and 3.28).
The FEM-A model shows a slightly higher temperature amplitude than the
consensus profile but the shape is the same as the consensus profile. The same
problem is evident for the divergence umplitude profile but the magnitude of the error
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is smaller. The FEM-A model shows no sign of the oscillation that is evident near the
surface in the Rossby wave experiment and the mountain topography experiment.
This may be because the ubar field is almost zero near the bottom of the atmosphere
where Z is small which cancels out the problem with the basis function that may be
causing the oscillation in the other experiments. The FEM-A model profile is almost
identical with the consensus for temperature phase and identical with the consensus
profile for divergence phase.

The FEM-B model profile shows a lower temperature amplitude than the
consensus profile and the shape is the same except for a small oscillation that occurs in
the lowest three lavers of the atmosphere. This oscillation is not evident in any of the
other experiments. For divergence amplitude, the amplitude is lower than the
consensus profile, but there is no oscillation in the lower lavers of the atmosphere and
the magnitude of the error is smaller, as it is for the FEM-A model. The FEM-B
model profile is further from the consensus profile than the FEM-A model profile for
temperature phase but it is still very close (Fig. 3.29). The profiles for divergence
phase are identical for all four models (Fig. 3.28(bottom)).

2. Six-Layer Models

In the six-layer case the FDM-A, FDM-B, and FEM-A models all seem to
converge to the same solution, but the FEM-B profile is off in the temperature
amplitude and the divergence amplitude (Figs. 3.30 and 3.31) although the pattern is
similar. The phase profiles for all four six-layer models are very close to the sixtv-layer
consensus. The FEM-A six-layer model profile for temperature amplitude is closer to
the sixty-layer consensus than the FDM-A six-layer model and slightly better than the
[FDM-B six-layer model (Fig. 3.32). The temperature amplitude profile oscillation in
the lowest layers of the FEM-B sixty-layer model is evident at Z = 0.3 in the six-laver
model (Fig. 3.33). The reason for this oscillation is unclear, but it should have

something to do with the basis functions near the boundaries. *
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Fig. 3.1 Sixty-layer Rossby wave experiment at 96 hours.
Temperature amplitude profiles (top) and temperature phase
profiles (bottom) are compared.
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Fig. 3.2 Sixty-laver Rossbv wave experiment at 96 hours.
Divergence amplitude profiles (top) and divergence phase
profiles (bottom) are compared.
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Fig. 3.3 Sixty-laver Rossby wave experiment at 96 hours from Jordan (198S5).
Temperature amplitude profiles are compared for models FEM-A (top) and
FEM-B (bottom) and FDM-C, which represents the consensus profile.
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Fig. 3.4 Six-layer Rossby wave experiment at 96 hours.
Temperature amplitude profiles are compared for the six-layer
and sixty-layer FDM-A (top) and FDM-B (bottom) models.
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Fig. 3.6 Six-layer Rossby wave experiment at 96 hours.
Divergence amplitude profiles are compared for the six-layer
and sixty-layer FDM-A (top) and FDM-B (bottom) models.
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Fig. 3.7 Six-layer Rossby wave experiment at 96 hours.
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41




TEMP. AMP. MOUNTAIN CASE (60-L)

y

LEGEND

L
S
o

|
I

A

A ' A i

|

HEIGHT, Z = -LN(1/P0)
000y 062 03 04 06 06 07 00 09 1.0

o os 1 15 2 28 3 38
TEMPERATURE AMPLITUDE (KELVIN)

TEMP. PHASE MOUNTAIN CASE (60-1)

S

A

LEGEND

o I

i

HEIGHT, Z = ~LN(1/P0)
0001 02 03 04 06 06 07 0.8 09 10

1

0 45 90 133 180 225 20 NS 360
TEMP. PHASE (0-360 DEGREES)

Fig. 3.8 Sixty-layer mountain topography experiment at 96 hours.
Temperature amplitude profiles (top) and temperature phase
profiles (bottom) are compared.
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Fig. 3.9 Sixty-layer mountain topography experiment at 96 hours.
Divergence amplitude profiles (top) and divergence phase
profiles (bottom) are compared.
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Fig. 3.10 Sixty-layer mountain topographv experiment at 96 hours from Jordan (1985).
Temp. (top) and divergence (bottom) amplitude profiles are compared
for models FEM-A and FDM-C, which represents the consensus profile.
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Fig. 3.11 Sixty-layer mountain topography experiment at 96 hours from Jordan (1985).
Temperature amplitude (top) and phase (bottom) profiles are compared
for models FEM-B and FDM-C, which represents the consensus profile.
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Fig. 3.13 Six-layer mountain topography experiment at 96 hours.
Temperature amplitude profiles are compared for the six-layer
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Fig. 3.14 Six-layer mountain topography experiment at 96 hours.
Divergence amplitude profiles are compared for the six-layer
and sixty-layer FEM-A (top) and FEM-B (bottom) models.
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Fig. 3.16 Sixty-layer diabatic heating experiment at 96 hours.
Temperature amplitude profiles (top) and temperature phase
profiles (bottom) are compared.
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Fig. 3.17 Sixty-laver diabatic heating experiment at 12 hours from Jordan (1985).
Temperature amplitude profiles are compared for models FEM-A (top)
and FEM-B (bottom) and FDM-C, which represents the consensus profile.
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Fig. 3.18 Sixty-layer diabatic heating experiment at 96 hours.
Divergence amplitude profiles (top) and divergence phase
profiles (bottom) are compared.
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Fig. 3.19 Sixty-layer diabatic heating experiment at 12 hours from Jordan (1985).
Divergence amplitude (top) and phase (bottom) profiles are compared
for models FEM-A and FDM-C, which represents the consensus profile.
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gt Fig. 3.20 Sixty-layer diabatic heating experiment at 12 hours.
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T Fig. 3.21 Six-layer diabatic heating experiment at 96 hours.
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A profiles (bottom) are compared.
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Fig. 3.22 Six-layer diabatic heating experiment at 96 hours.
Divergence amplitude profiles (top) and divergence phase
profiles (bottom) are compared.
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Fig. 3.23 Twelve-layer diabatic heating experiment at 96 hours.
Temperature amplitude profiles (top) and temperature phase
profiles (bottom) are compared.
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Fig. 3.24 Twelve-laver diabatic heating experiment at 96 hours.
Divergence amplitude profiles (top) and divergence phase
profiles (bottom) are compared.
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Fig. 3.28 Sixty-layer baroclinic instability experiment at 96 hours.
Divergence amplitude profiles (top) and divergence phase
profiles (bottom) are compared.

62




T T P o P T P U P G T PO O P P e renr

L AL aak s ol oo Tod 2L o

TEMP. PHASE BAROCLINIC CASE (60-L)

°. 1
] 7/
- LEGEND Y
=°11 -
g5l - /
=)
|
-3
N e
«©
[T
- "
5o
=E
-— O
gl
o

190 200 210 220 230 240 250 260
TEMP. PHASE (0-360 DEGREES)

Fig. 3.29 Sixty-layer baroclinic instability experiment at 96 hours.
Temperature phase profiles are compared on a closer scale.
Compare Fig. 3.27(bottom).

63




TEMP. AMP. BAROCLINIC-CASE (6-L)

°
- —
A:" -/

2. _

S5

39 LEGEND |
L o

o FEM=4
- b 17—

-

T o

Ha

-— O <

o N

Q. R o i

@

“S 55 65 75 85 95 105 1S 123
TEMPERATURE AMPLITUDE (KELVIN)

TEMP. PHASE BAROCLINIC CASE (6-L)

A 4 - |

'

-

LEGEND

A

ot

/

. —
- K
g
O/AG' 90 135 180 225 270 318 2380
TEMP. PHASE (0~-360 DEGREES)

'y

'
——

HEIGHT, Z = -LN(l/P0)
0001 02 03 04 05 06 07 08 09 1.0

Fig. 3.30 Six-layer baroclinic instability experiment at 96 hours.
Temperature amplitude profiles (top) and temperature phase
profiles (bottom) are compared.




DIV. AMP. BAROCLINIC CASE (6~L)

-

] P
=3

S J

zZe| LEGEND
= FDM-A

" - :Q\b}flz-
N o FEA—B —
=

S

=

4

e,

0001 02 03 04 05 068 V? 08 00 1.0
4

—

0.0.29 40 8.0 8.0 10.0 120 14.0 16.0 18.0
/Da!‘gRGENCE AMPLITUDE (1/SEC) *10™

DIV. PHASE BAROCLINIC CASE (6-L)

A

LEGEND

1
iy
A
=

|
o

<
]
//

'y
-

NEIGHT, Z = -LN(I/10)
00 01 02 ({3 0‘.4 25 06 07 08 09 1.0

s

R
a7 45 90 135 180 225 270 313 360
DIV. PHASE (0-360 DEGREES)

Fig. 3.31 Six-layer baroclinic instability experiment at 96 hours.
Divergence amplitude profiles (top) and divergence phase
profiles (bottom) are compared.

65




e aa A aa. s oo aas s o |

" TEMP. AMP. BAROCLINIC CASE (6-L)

0

o
1'. J.,

A

1

.

A

i

HEIGIIT, Z = -LN(1¥/P0)

001 02 03 04 05 06 07 O

'l

"‘0 ‘3 ‘é - ’A i‘
ha © TS 55 65 75 85 95 105 115 125
J TEMPERATURE AMPLITUDE (KELVIN)

') Fig. 3.32 Six-layer baroclinic instability experiment at 96 hours.
Temperature amplitude profiles are compared for models FDM-A, FDM-B, FEM-A,
and sixtv-layer FDM-A, which represents the consensus profile.

et
W

R MM . ‘» “n . L .
DR [
R S T e SR T AN LK AN o,



¥
T

- - o
v
,l{‘zltl

r"

’.‘l"

k. TEMP. AMP. BAROC CASE (FEM-B)

-
0001 02 03 04 05 068 07 08 09 l.o
L

1

i

h

LEGEND
..8 LAYERS .
60 LAYERS

1

HEIGHT, Z = —-LN(P/P0)

A

L

—

4::
48 1) [ 1] Kt 8% 8 105 119 123
TEMPERATURE AMPLITUDE (KELVIN)

(}f Fig. 3.33 Six-layer baroclinic instability experiment at 96 hours.
V- Temperature amplitude profiles are compared for the six-laver
and sixtv-laver FEM-B model.

" 67

i

AR AN S RN A AR S



Sl d o ALk A aos el ian e TPy T -

IV. CONCLUSIONS

The modification of the finite element models with the inclusion of the basis
functions near the boundaries (¢(Z) and @, 5(Z)) completely fixed the FEM-B
model in the experiments that can be compared with the results of Jordan (1985). The
modified FEM-A model is much better when compared with the results of the
unmodified model, however the unusual temperature amplitude behavior in the lowest
lavers of the model are not totally gone after the modifications. The theory of Jordan
(1985) that the oscillation in the temperature profiles of both unmodified models is
generated by matrix elements which represent the contributions from the basis
functions near the surface, is well supported by the results of the modified models.
There is still some question as to how to define terms at or below the bottom of the
atmosphere and a change in the definition of those terms may fix the small oscillations
that are evident in the FEM-A model in the Rossby wave and mountain topography
experiment.

The finite element models display a better convergence to the sixty-layer
consensus than the finite difference models in many of the cases and in the other cases
they are the same.

Jagged temperature profiles are not observed in the diabatic heating experiment
in either the modified or the unmodified (Jordan, 1985) models. This may be because
the heating is defined far enough away from the boundaries that the previous problems
associated with the boundary terms are not significant. The FEM-A model has a
slightly different sixty-layer divergence amplitude response outside the heated layer
than the other models. The differences between grids is most apparent in th.’ S
experiment. The differences may be caused by the difference in the maximum amplituuc’
of the heating defined for the different grids. The results may be much closer if the
maximum heating were to be set equal for both grids. This is supported by the fact
that the sixty-layer profiles of all four models represent the same physical solution.

Both of the finite element model results differ from the consensus results for the
baroclinic instability experiment for temperature and divergence amplitudes. The FEM-
A model difference is probably a manifestation of the problems observed in the Rossby
wave experiment and the mountain topography experiment. There is an oscillation and
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a difference from the consensus in the baroclinic instability experiment for the FEM-B
model which may also be caused by the definition of terms at or below the bottom of
the atmosphere. In future studies the temperature on the boundary in the FEM-B
model should be included in the forecast field. This may improve the behavior for the
baroclinic experiments, where the surface temperature is very important.
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APPENDIX A
FINITE DIFFERENCE APPROXIMATIONS

dd
For terms of the form — W .
dzZ

a. FDM-A and FDM-B, atlevel Z = Z, :

d- + 0 — U 1
{w (——‘—1——-) + W, (L)
z" Zi ’ Zi = Z;y

é
2. For terms of the form — W .

oy
a. FDM-A atlevel Z = Zi :

dT 1 T, - T._
_.Zw= - (W (_l.‘*_‘J___) + wl_l(_l___u_)}
d 2 Ziv1~ 4 Zi = Zi—
b. FDM-B atlevel Z = Z;:
ﬂw_iw { Tiv1 ™ Ti'_)+(T Tl—l)}
dZ 2 Ziv1— Z4 Z, -7

3. Fort f the f dﬁV

. For terms of the form — V:

dz

a. FDM-A, atlevel Z = Zi:
dZ 2 ZH.I-Z ZI—Zl_l

b. FDM-B, at level Z = Z’i:

da
azv“‘”m + v>(_L-J——L

Zl+l Zi




v
Sha N Y

APPENDIX B
GALERKIN FORM OF FEM-A PROGNOSTIC EQUATIONS

1. Vortcity Equations (2.25) and (2.26) :

i+1 i i+1
dAly . Z - [z
-~ 1 P9
j=i—1 dt Z, . j=i=1 Z, I

N L
LRI D) Alzé @] @y ¢; dZ

k=i—1 j=i—1 0
i+ 1 21
"B X Vi L eed
]=l-l 0 (B'l)
i+1 j i+1
dal, . Z Z
Y —2 To¢daz=-f ¥ D, [ To ¢ dz
2 LAY
j=i-1dt “Zg M j=i=1 ~ Zo M
i=1 " 1+ 1
+ uk_Z 0 —Y Al “Z ?; Py ; 42
=i-1 j=i- 0
i+1 i
]—’_l (B.2)

Note that in these equations, and the equations that follow, the basis functions
are functions of Z (@; = @,(Z) and y; = y;(Z)). All of the other variables, A, D. H,
Q T,y U, V, and W, are functions of time ( A; = Ay(t), D; = D;(t), H; = H;(t),
Q; = 1), T; = Ti(t), u = u(r), Uy = LUy(1), V; = Vy(1), W; = Wy(t)).
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:;f 2. Divergence Equations (2.27) and (2.28) :

‘:"

N | . . .

,’G' 1+ l le Z 14+ l . Z

— 1Ty o = Te. o

o -._Z_ dt jZ @) 9; i f._.z Al) -"z ?; ¢; dZ
‘,"Q ] 1 l 0 ] =) - l 0

)

4' }

2 i+1 ‘ 1+1 Z

" ko LW Y Dhf o0z

k=1—-1 j=1—1 0

c;"

".l i+1 7

;:ic -8 X LJl -‘.ZT(pl 9; dZ

:::: j=1=1 o]

‘l‘ L]

x i+1 _ i+1 Z, de

A mu T ¥ oWy [T e

;:i: k=i—-1 j=1-1 )

o .

-.'l|. 1+1 ZT

L TH Z H)y '[Z ®; ¢ dZ

o j=1=1 o (B.3)
g

wh i+1 dDj 4 i+1

% T, =

b Y G eeaz = Y Al Teje e
J =1—1 0 i=i=1 o}

A% . .

3 i+ 1 ‘ i+l

e +u E ¢ Y Dif ®; Py @; dZ

K, 2 k=1i—1 j=i—-1
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"':' i+1
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3. Thermodynamic Equations (2.29) and (2.30) :

1+ 1
5! T jo

dZ =
)—1—1dt ¥ %

e ]=l-1 0 (BS)

‘ i+1 i+1

+p Y ut ¥ THJ <P,¢k<vld2
o k=i=1 j=i1—-1

01+
el
o
™
<
~N
ey
N
-4
S
S
—O-
N
N |

B i=i—1 0 (B.6)
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APPENDIX C
BASIS FUNCTION EQUATIONS FOR FEM-A

1. Notation:

Bj=27; -2,
8j=25-Zj—
E_=Z_Zi
2. For the general case:
E =4+ .58 _ & 4
03 == —i=1 -ay- =l sers-d
"(Ai+Ai-l) 2 2
=—F;+.5A’i+1 -5s§sA"+l
S8+ A 2 2

for any 1 sufficiently far from the boundaries, 3 S i < n.
vi(3) S L) -4;S8<0
Bl Tl TI 0SE S0y,
4i+1
for 2Si1S<n
3. For special cases, 91, 92,0, 4 1, P+ 2 VI Vn+1

& = - + 587
(Pl - A,z

b3

LA UMOMMOL YN L)
AL 3‘“;‘v',’lé.'t:!‘.:,ﬂp‘,"gb,-‘

&




i E + 1.58°
: 0yE) = 2 -8, S E < -.58,
: 8y
: L 58y S % S 5
Y = - - A' A - . ’
f S5(875 + A'3) 275 3
'
§ - + A'
D o= —2 0<SEsSA
[ A.
5y = 5+t 8n+y
‘ Wn+l(3) A +
n+1
; . E+ 84y *+ 50, 8’ , A+
% 0413 = — - - SES-
S84 T A 2 n 2
¢
! - + .50
) = 2 n+l .
= " 0 S g < -An+l
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ki APPENDIX D
GALERKIN FORM OF FEM-B PROGNOSTIC EQUATIONS

! 1. The vorticity equations have the same form as the vorticity equations for model
) FEM-A, equations (B.1) and (B.2).

vt 2. The divergence equations are the same as the divergence equations in model FEM-
atd A, equations (B.3) and (B.4).

niet 3. Thermodynamic Equations (2.29) and (2.30) :

o it am
R L = I w,%
a0 j=i-1

h i+1 i+l
> ' > Tl 5 w] Py Vi 4Z
g k=i=1 j=i—-1

il ikl L Zp de

Z k 2 v]l 5 T —k 1dZ
k=1- j=i—=1
§é 1+ 1 i+1 Z+d
‘ol - =k ' T ¥k

3 Y ™ Y W, V. y: dZ

k=i=1  j=i-1 = Zo 4 17

o i+1
"::" + Z Qll j. \I’l \v[

ve!o j=i=1 (D.1)

5'1'.\ 7 6

:‘,A(n,l‘ 5!5,0.

ek OAGAOHATIRLOG
'a"“'!'h?'i;'."h ‘_".-l PR,




° (D.2)
“:;: Note that in these equations the basis functions are functions of Z (9; = @,(Z)

RO and ¥; = y;(Z)). All of the other variables, Q, T, u, V, and W, are functions of time
i (Q = Qv), T; = Ti(t), u = u(t), V; = Vi(t), W; = Wi1)).
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APPENDIX E
FORCED VERTICAL VELOCITY

1. The contribution to the surface geopotential from the forced vertical velocity is 9

O xD) = @ sind(M2T)sin(ux)  t ST
= @ Sin (UX) t>T, (E.1)

where ¢, is mountain geopotential (m?/s?), t is time, and T is the total time to build
the mountain. Pm is a constant,

¢m = gHp (E.2)

where g is gravity and H, is the height of the mountain. H | is a parameter specified
in each model. H, = 750 meters in the thesis experiments.

2. The time rate of change of @ is separated into sine and cosine components for use
in the surface geopotential forecast equations,

%s = MTS (1) cos (ux) + MTSy(1) sin (ux), (E.3)

wh g +1u g
e —— = = + U =—.
CE a sfe ax

Equation (E.l) is substituted into equation (E.3) and the resultant expression is
separated into sine and cosine equations. The equations to calculate the terms M1«
and MTS, are

MTS|(t) = Ugp, @p # sin?(Mu2T)  t ST
= Ui Pm M t>T, (E.4)




T .
MTSx(t) —T"’msin(m,fzr) cos (mt:2T) t < T

= 0 t>T. (E.5)

A These terms are calculated for each time step in the model's forecast subroutine.
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APPENDIX F
DIABATIC HEATING TERMS

For the diabatic heating function defined in equation (3.1), the maximum heating
occurs at Z = 0.50, the midpoint of the heated layer. Temperature and diabatic
heating are defined at the staggered levels for grid A, and at the unstaggered levels for
grid B. Consequently, the rate of heating differs between the staggered and
unstaggered models. In these experiments, the heatsd laver is between Z = 0.40 and
Z = 0.60, the heating rate is 5.0 K, day, and only the cosine term, Q. is nonzero in the
heated layer. The value of the heating term is listed below for staggered and
unstaggered levels for six-, twelve- and sixty-layer models.

Grid A Six-Layer Models Grid B Six-Layer Models
z Q z Q
0.250 0.000000E + 00 0.333 0.000000E + 00
0.417 0.387657E-05 0.500 0.578704E-04
0.583 0.387668E-05 0.667 0.000000E + 00
0.750 0.000000E + 00
Grid A Twelve-Layer Models Grid B Twelve-Laver Models
Z Q z Q
0.375 0.000000E + 00 0.333 0.000000E + 00
0.458 0.364241E-04 0.417 0.387657E-05
0.542 0.364243E-04 0.500 0.578704E-04
0.625 0.000000E + 00 0.583 0.387668E-05
0.667 0.000000E + 00
Grid A Sixty-Layer Models Grid B Sixtv-Laver Models
Z Q z Q
0.392 0.000000E + 00 0.400 0.000000E + 00
0.408 0.985885E-06 0417 0.387660E-05
: 0.425 0.847474E-05 0.433 0.144676E-04 ‘
) 0.442 0.214459E-04 0.450 0.289351E-04
§ 0.458 0.364238E-04 0.467 0.434028E-04 .
: 0475 0.493952E-04 0.483 0.539938E-04
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0.492
0.508
0.525
0.542
0.338
0.375
0.392
0.608

0.568843E-04
0.568845E-04
0.493957E-04
0.364246E-04
0.214466E-04
0.847529E-05
0.986071E-006
0.000000E + 00
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0.500
0.517
0.533
0.550
0.567
0.583
0.600
0.617

0.578704E-04
0.539938E-04
0.434028E-04
0.289352E-04
0.144677E-04
0.387665E-05
0.929893E-16
0.000000E + 00
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